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DECOMPOSITION AND SUBOPTIMAL CONTROL IN DYNAMICAL SYSTEMS* 

F.L. CHERNOUS'KO 

A non-linear controllable dynamical system described by Lagrange 
equations is considered. The problem of constructing bounded 

controlling forces which steer the system to a given state in a finite 
time is investigated. Sufficient conditions are indicated for the 
problem to be solvable. Under these conditions, the initial system 
splits into subsystems, each with the degree of freedom. On the basis 
of this decomposition, using a game-theoretic approach, a feedback 
control law is proposed which solves the problem posed above and is 
nearly time-optimal. It is shown that the control must be constructed 
with proper allowance for the maximum values of the non-linear terms and 
perturbations in the equations of motion. The perturbations may be 
ignored only if the ratio of the maximum level of the perturbation to 
that of the control does not exceed the "golden section". 

1. Statement of the problem. Consider a system whose dynamics is described by the 
Lagrange equations 

Here q=h . . . . q,J are generalized coordinates of the system, n is the number of 
degrees of freedom, dots denote differentiation with respect to time t, the qeneralized forces 
consist of controlling forcesQ,, which have to be determined, and forces Qh; which include 
all other internal and external forces, including uncontrollable perturbations; throuqhout, 

li = 1, . ., n. The kinetic energy of the system is 

(1.2) 

where .4,, are the elements of a symmetric positive-definite matrix -4 (q) of order n x n. 
Substituting (1.2) into (1.1) we reduce the equations of motion to the form 

A (4) q" = Q f 8 (q, 4'. t) (1.3) 

Here Q = (Q,, . . . . Q,,) is the vector of controlling forces, and S = (S,, . .., s,) is a 
vector-valued function with the components 

The controlling forces are subject to the constraints 

IQs I< Qc" 
where Qh.'>O are given constants. 

The initial data of system (1.3) at the starting time 

4 (L,) = q"? 4' @0) = (q')" 

and they lie in some domain D in 2n-space: {q', (4')') ED. 
The control problem may be formulated as follows. 

t, have the form 

(1.5) 

(4.6) 

Problem 1. Find a control, based on the feedback principle Q = Q(q,q')r which satisfies 
inequalities (1.5) and converts system (1.3) from an arbitrary initial state (1.6) in D to a 
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given state with zero velocities 

q(t,) ='I', q'(t,)=O 

in a finite time (the time tl> t, is not prescribed). 

2. Simplifying assumptions. Let us express the matrix A (q) as 

(1.7) 

‘4 ((I) = B ((I) A,, B(q)=E+L= 

A (4) A,_', L = [A ((1) - A,1 A;’ 

(2.1) 

Here A,is a constant symmetric positive-definite matrix of order IL x n, and E is the 
identity matrix of order n x n. As B (4) is a non-singular matrix, B-' k) exists. Multi- 
plying both sides of Eq.(1.3) by B-‘(q) and using (2.1), we get 

-41q” = Q + K (4, (1.7 t, Q) (2.2) 
R = H’ + K”, K’ .: R-1 ((I) S (q, q’, I$) 

R” = W’ (q) - El Q (2.3) 

Eq.(2.2) is equivalent to the original Eq.(1.3). 
It will be assumed below that the components of the vector R in (2.3) satisfy the in- 

equalities 
lllii (~7, ‘I’, 1, Q) 1 < Rk"< Qh. (2.4) 

for all t > t,, all (4, 4') ED and all Q satisfying inequalities (1.5). 
The following lemma shows how to verify condition (2.4). 

Lerrnna. Suppose that for any n-vector z and all t>&,{q,q*}E ,O, the following conditions 
hold: 

where pI, II, Y are constants. Then the components of the vector R defined in (2.3) satisfy 

the following estimates for all t F.- t,, {q, q’} ED and all & satisfying (1.5): 

I R, (q, q’> t, 0) 1 < ~Qtc” -I- x (1 + y) 0" 
i( = p (pl - p)-‘, Q” = 1.X (QkO)V 

(2.6) 

Note that since the matrix A,is positive-definite, the constant p1 in (2.5) may be any 
positive number not exceeding its smallest eigenvalue. 

Proof. By the first inequality in (2.5), 

( A1-‘z ) -< p1-’ ( i I (2.7) 

Here and below z is any n-vector. 
It follows from (2.7) and the second inequality in (2.5), using the notation (2.1), that 

1 Lz 1 < i 1 z 1, 1. = pp1-’ (2.8) 

It follows from the definition of B in (2.1) that 

III = I -I_ Lz (2.9) 

Inequality (2.8) and Eq.(2.9) imply the estimate 

1 Bz I > 1 z j - 1 Lz I> (1 - A) I z ) (2 10) 

It follows from conditions (2.5) that E.<I. Putting I = B-~z' in (2.10), we obtain 

I B-b I < (1 - h)_' I 2’ I (2.11) 

Inequalities (2.8) and (2.11) yield 

( LB-‘2 1 :< X I z 1, x = h (1 - i.)_’ = ;, (pl - p)-’ (2.12) 

We now rewrite (2.9), substituting there z== i?-IS. Using the resulting equality, we write 

the expression for Kin (2.3) in the form 
mk' = (B"S)r = & - (LB-'s)I, (2.13) 

The subscripts denote vector components. Using conditions (2.5) and in&quality (2.12), 

we deduce from (2.13) that 
1 ffk’ 1 “; VykO + / I,B-‘s j < %‘&O -: y. 1 s 1 < “Vk’ -in XYv’ (2.14) 

Here we have used the notation (2.6) for 0". Ih the expression for K" in (2.3) we 



substitute the expression for B_‘Q derived from (2.9) by putting z = B-IQ: 

RR*= (B_'Q - Q)& = - (M?'Q)k 

Hence, using inequalities (2.12) and (1.5), We get 

1 R~- [ < 1 (LB-'&j < ILB-'Q [ <X IQ I< x [I (Qs?')*~"' = x00 

The estimates (2.6) now follow from this inequality and from (2.14), completing the proof 
of the lemma. 

COYYYZZar&i. Under the assumptions of the lemma, if ~(1 and u is sufficiently small, 

then conditions (2.4) are satisfied. 
In connection with the assumed constraint (2.4), the following questions arise: how 

should one select the matrix AZ, andhow can one verify the validity of the constraint for a 
given system (1.3)? These questions are interrelated, because the vector R in condition (2.4) 
depends on Arthrough formulae (2.1) and (2.3). It follows from (2.6) and the Corollary that 
p should be chosen as small as possible. Thus, A, should differ by as little as possible 
from A (q) in the domain D. In other words, A, should be taken to be equal to some "average" 
value of A (9) over D, e.g., to A (4% A (q") or A [(q" + $):21. The number jr1 should be 
taken equal (or near) to the least eigenvalue of A, (see the remark below). Once A, has been 
chosen, if condition (2.4) fails to hold for a given system (1.3), one should, first, enlarge 
the domain of admissible controls, i.e., increase Q6@ in (1.51, in order to ensure satisfac- 
tion of the condition v<l; and, second, one should reduce the domain D so that A (q) dif- 
fers only slightly from .4,. 

3. Decomposition. Transform the variables in system (2.2) by the formula 

‘4, (Y - 9') = Y (3.1) 

where 4' is the same as in (1.7). Then system (2.2) becomes 

$#," _ Qr +R, (3.2) 

Let us assume that condition (2.4) is satisfied and that all motions of the system lie 
in D. Then, in view of (1.5), we have the constraints 

iQirl<,<VrO* IRll/<RRfiO<QkO (3.3) 

After transformation (3.1), the initial conditions (1.6) and boundary conditions (1.7) 
become 

Y Go) = A, (no - n% Y' 00) = A, (0 (3.4) 

y 0,) = 0, y' ($1) = 0 

In system (3.2), which splits into n subsystems, R,may be regarded as bounded, indepen- 
dent perturbations. As a result we arrive at the following theorem. 

Theorem 1. Assume that condition (2.4) is satisfied and all motions of system (1.3) 
under consideration take place in the domain I). Then, to solve Problem 1, it suffices to 
solve n control problems for the linear subsystems (3.21, each with one degree of freedom. 
In each of these problems one must construct a scalar control & (yh.,yjT.') subject to the 
constraint (3.3) which transfers the k-th subsystem (3.21 from an arbitrary initial state to 
the origin in a finite length of time, under any admissible perturbationsRii satisfying the 
constraint (3.3). 

A different approach to the construction of controls for mechanical systems, also based 
on decomposition, is proposed in ~'1, 2/. 

4. Solution of the game probtm. Let us consider the k-th subsystem (3.2), assuming that 

y, = Qk"x, Qk===Qltou, R,xQ,;% (4.1) 

This subsystem, together with the constraints (3.3) and conditions (3.4), has the standard 
form 

r'"=u-Cv, lul<l, [ul<sp<l 
s(0) = E, 5' (0) -= 1,. z (t)== 3' (T) = 0 

(4.2) 
(4.3) 

Here 

where no loss of generality is involved in putting the starting time in 14.3) equal to zero. 
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Employing the approach of the theory of differential games, let us find a feedback control 
11 (s, J.') which takes system (4.2) to the origin (4.3) in a minimum guaranteed time T for 
any admissible perturbations v. This is a simple linear differential game for objects of the 
same type 131. Its solution reduces to determining an optimal control for the system 

J .' = (1 - I)) n, / Et j < I, 74 min (G) 

subject to the boundary conditions (4.3). The required control u (x. x') and minimum quaranteed 
time Z in the game problem (4.2), (4.3) coincide with the optimal control synthesis and 
optimal time for problem (4.51, (4.3). Note that system (4.5) is derived from (4.2) by let- 
ting the perturbation equal u = -#x', which is the optimal control for an "opponent" who 
selects the perturbation V. 

The solution of the time-optimal control problem (4.5), (4.2) is well-known /4/. We 
shall cite only those formulae necessary for our further purposes. 

An optimal programmed control in problem (4.51, (4.2) assumes limiting values u :: __::1 
and has at most one switching point. Taking l, = ronst in the general solution of system 
(4.5), we obtain the equations of the phase trajectories in the z, .I' plane: 

J = R' I_ 12 (1 - 61) U-' (.I')?, II' = cons1 (/t.(i) 

The only trajectories that hit the origin as t increases are the parabolae (4.61 with 
I? = 0 and u=ii_l. On these parabolae we have 

r = (1 - p) U (t - r)',?, Lt. == (1 - 0) U (t - r) (4.7) 
([L LZ .+I) 

The two branches of the parabolae (4.71 with t <<t form the switching curve (SC). The 
optimal control synthesis has the form 

The equation of the SC is obtained by equating the switching function to zero: &(I, x')== 0. 
All the optimal phase trajectories in the z. x' plane are unions of two sections of parabolae 
(4.6) with u = &I, where the second section coincides with a section of the SC (4.7) and 
terminates at the origin. If the initial point {rs> nf lies on the SC, there is no first 
section at all. 

Fig.1 shows the SC I$,> = 0 (the thick solid curve) and an optimal trajectory beginning 
at a point {j, n) in the domain $p (0 (the thin solid curve). Along the first section 
of this trajectory u=--i, along the second, u=il, The arrows indicate the direction 
of increasing time t. The field of optimal phase trajectories is centrally symmetric about 
the origin. 

Let us calculate the optimal time 7 necess- 
ary to reach the origin along an optimal trajectory 
from an arbitrary starting point {& n}. To fix 

hand, it is a point of the SC (4.7) for ZL = 1. 
Comparing the appropriate expressions, we obtain 

.YW z (s) = 5 +- '?s - (1 - p) s212 = (1 - p) (s - 7)"."2 

1N I$ i :: 
z' (s) = n - (1 - p) s = (1 - p) (s - T) 

Fig.1 

Determining s and 2 from these equalities, 
we find that 

a (E, n) = (1 - p)-' (2 lr1"/2 - (1 - P) 5yl"~ - w} (i.10) 

y = sign@ (E, 11) 

Here the symmetric property of the phase trajectories has been taken into consideration. 
The function Y&, is that defined in (4.9). Along the SC ($e = 0) the y in (4.10) may be 
taken equal to either of the numbers y= ii; the value of s(E, 1) will be the same. 

Formulae (4.8)-14.10) determine an optimal control synthesis in the least guaranteed 
time in the game problem (4.21, f4.3). It should be observed that if the perturbation V is 
not optimal (vf: -pu), the phase trajectories will also deviate from the optimal ones. However, 
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the time required to transfer the system to the origin will not exceed the value of z in 
(4.10). Note that the system, having once reached the SC, will continue to move along that 
curve until it reaches the origin, whatever the admissible perturbation. Under such conditions, 

if v=#= -pu, the result is a sliding regime of motion along the SC. Thus, if v=O on the 
SC, the control will take the values u = +I with infinitely many changes of sign, SO that 
"on the average" u=l--p or u =-(1 -p) for the appropriate branches of the SC. 

5. Controt synthesis. We will now proceed to solve the original Problem 1. A synthesis 
of the control in this problem is derived from (4.1), (3.1): 

Qr (Q, 4') = Qr" u (2. 2') 

5 = Yk/QLO = [A, (Q - Q'MQkO 

x' = Y~'/Qv' = (4q'h~Q,0 

(5.1) 

The function u (I, 5') is given by formulae (4.8) and (4.9). with the parameter p deter- 
mined for each k by (4.4). The control (5.1) is a bang-bang control, which takes the extreme 
admissible values QK = &Qko. 

The nature of the motion as determined by the control (5.1) may be described as follows. 
Let us assume first that the perturbations R, in system (2.2) or (3.2) take the optimal 
"worst" values at each instant of time, i.e., those values which cause the maximum delay in 
bringing the system to its terminal state. In terms of system (4.2) this means that v = -pu, 
while in terms of system (3.2), an examination of equalities (4-l), (4.4), (5.1) yields 

R~ = --RR0 u (x, I') = -%‘QI, (~9 q*VQx’ (5.2) 

Under perturbations (5.2), the motion of system (3.2) takes place, with respect to each 
coordinate yr, along time-optimal trajectories of system (4.51. The transition from the 
original coordinates 4 to the coordinates y, and to the variables 5,~' is given by formulae 
(3.1), (4.1) or (5.1). 

However, if the perturbations are not the optimum ones (5.2) - as is usually the case - 
the phase trajectories relative to each degree of freedom, say the k-th, in the x,x' plane 
are no longer optimal, as described in Sect.4. Under these conditions, any motion along the 
SC takes place in a sliding regime. 

The time t, to steer system (1.3) (or (2.2)) to a given state (1.7) does not exceed the 
maximum optimal time for each of the subsystems (3.2), (4.2) or (4.5). In view of (4.4), we 
have 

The function ~(5, n) is given by (4.10) with P determined by 
We collect our results together in the following theorem. 

Theorem 2. Assume that condition (2.4) is satisfied and that 

(5.3) 

(4.4). 

all motions under consider- 
ation take place in the domain D. Then a control synthesis Q(Q, q’) solving Problem 1 is 
given by formulae (5.1), with the function u(z, I') determined by (4.8), (4.9) and the par- 
ameter p for each degree of freedom by (4.4). This control brings system (1.3) to a given 
state (1.7) no later than the time t, determined by (5.3), (4.10). 

The control thus constructed may be termed "suboptimal", since it is nearly a time-optimal 
control and is in fact made time-optimal by the "worst" perturbations. 

6. Comparison of two control modes. The mode of control proposed above allows for the 
presence of perturbations RI, in system (2.2) or (3.2) and depends on the ratio of the per- 
turbation and control levels (see (4.4), the parameter p(1). Another, quite widespread, 
approach to controlsynthesis entirely ignores the perturbations, constructing the control 
without taking them into consideration. 

The control law obtained in this way is then applied to the perturbed system. This 
approach is applied, for example, in the control of manipulatory robots /5, 6/. 

Let us compare both modes of control as applied to system (4.2), (4.3), to which the 
equations of motion reduce after decomposition; our aim is to determine to what degree it is 
justified to ignore the perturbations when constructing the control. 

When there are no perturbations (v = 0), system (4.2) takes the form of (4.5) with p = 0. 
In that case a time-optimal control steering the system to the origin is synthesized by 
formulae (4.8), (4.9) with p = 0. We have 

$0 (5, I') = --I - I' 1 z’ 1 / 2 (6.1) 

The SC q0=O for the case p = 0 is shown in Fig.1 (the thick dashed curve). It is 
the union of two branches of parabolae, differing from the branches of the SC +p =0 for 
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P>O in the coefficient only. 
Let us examine the motion of system (4.2) under the control given by (4.8) and (6.1). 

In order to estimate the effect of the perturbations, we have to solve the following problem. 

Problem 2. Find a function v (1) satisfying the inequality ju j <<p, such that the 
phase trajectory of system (4.2) under control (4.81, (6.1), with initial condition (4.31, 
first crosses the SC +po = 0 as far as possible from the origin, i.e., at the maximum possible 
value of 1~. 1 or, what is the same, at the ma~~murn lx 1. 

To fix our ideas, let us suppose that the starting point (5, n} is in the domain $,(O. 
The phase trajectory of the system will first cross the branch of the SC Q0 = 0 on which 
5 > 0, z'< 0. By (4.8), we then have u =--1 along the whole trajectory. In sum, Problem 2 
reduces to the following optimal control problem: 

x,‘ = x.$, 2,’ = -l-+-u, /Ul=GP<~ 

x1 (0) = 5, x2 (0) = 11, 0 G t G e 
2x, (a) = x2% (O), 5% (0) --f min 

(6.2) 

Here 6 is the - as yet unknown - stopping time of the process. Applying the maximum 
principle /4/, we construct the Hamiltonian 

H = pr.z, + Pz (0 - 1) - (0 - I), Iv I Q p (6.31 

Here pr, pz are the conjugate variables, which satisfy the equations pi'= 0, pl= --pl. 
Integrating the conjugate system, we obtain 

p1 = c,, pz = c, - c,t (6.4) 

where C, and C, are arbitrary constants. In view of (6.3) and (6.4)‘ it follows from the 
maximum principle that 

L' = p sign (pz - 1) = es&n (C, - C,t - 1) (6.5) 

Consequently, the optimal control v(t) = +p has at most one switching point in the 
interval (0, 8). The transversality conditions for problem (6.2) are as follows: 

PI 89 52 (0) -I- P!! (B) = 0 

Here we have used Eq.(6.5). Eliminating p,(B) from (6.6), we obtain 

P IP2 FJ) - 1 I T b v-9 - 1 

Let us assume first that pz(0)"l. Then by (6.7) 

[>a (8) = (1 - p) (Z - p)-' < 1 

contrary to our assumption. Consequently has :he ;:;i) < 1 and, by (6.5), we have ~(6) =-p. 
Thus, by (6.51, the function u (t) 

(6.7) 

I’(t) = p, t E (0, u), 0 < ,J -=c 0 W) 
I’ (t) = --p, t E (u, 0) 

where o is the switching time. Inserting the control (6.8) into system (6.2) and integrating 
with initial conditions (6.2), we obtain 

z1 (t) = 5 -I- nt - (1 - p) Pi2 

5$ (t) = q - (1 - p) t, t " IO, CT1 

.X1 (t) = E + rJ0 - (1 - p) a'/2 + 

(6.U) 

[q - (1 - p) 01 (t - u) - (I -i_ p) (t - up.‘:! 
xz(t) = 1) - (I - p) u - (I -i- p) (t - u), t c La, 81 

We now put t = 8 in the solution (6.9) and let s,(8) = Y. The last equality in (6.9) 
gives 

8 - 0 = (1 + p)_' [rl - (1 - p) o - 1-1 (6.20) 

We now insert (6.10) into the expression for 61 (6) in (6.9) and use the boundary con- 
ditions (6.2) at t=8. Simplifying, we get 



XI (0) = E + qa - (1 - p) 0% + 
(1 _t p)-’ {fq - (1 - p) IsIS - P}/2 = YV2 

This equality yields 
(2 + p) Y" = 2 (1 + p) 5 + Tl" + 2,) [2rl" - (I - p) 0'1 

(6.11) 

It now remains to select the switching time (I so as to maximize tY j . By (6.11), we 
have 

o=Oif rl < 0, CT = (1 - p)-" q if '1 > 0 (612) 

Let us calculate the optimal values of the functional z?(6) = Y in Problem 2. Sub- 

stituting G from (6.12) into (6.111, we obtain 

Y = -(2 + p)-“3 21 (1 + p) 5 + qv, 11 g 0 

Y = -(I f pp (2 + pp rzg + (1 - pj-’ Tg’l., q > 0 
(6.13) 

The duration of the motion is found from (6.10) and (6.12): 

e = (1 + p)-' (II - Y), q .< 0 (6.14) 
0 = (1 - p)-’ q - (1 ‘- pp Y, q > 0 

Formulae (6.81, (6.9), (6.12)-(6.14) determine the solution of Problem 2. 
Thus, if the motion begins in the domain %<O, '1 GO, then o = 0 and along the whole 

trajectory u = --p. But if the starting point (6, 11) lies in the domain $O<O,n>>, then 
by (6.12) and (6.91 we have 5%(u) = 0. i.e., switching takes place at the same time as on 
the 2, axis. Remembering that the field of the phase trajectories is symmetrical about the 
origin, we can express the optimal control synthesis in Problem 2 in the form 

;IJ (z, 6') = p sign (5') (6.15) 

The thin dashed curve in Fig.1 represents one of the optimal trajectories beginning at 
a point {E, n} in the domain $,,<O, n>O. It is the union of two arcs of different parabolae 
which touch smoothly on the x axis. The first of these arcs coincides with an arc of the 
optimal trajectory constructed above for the optimal synthesis with p>O. 

Assume that the starting point lies on the SC $, = 0, with q>O. Then g = --q2i2, 
and we deduce from (6.13) that 

1 I-‘/q j = x = [p (a + p)j"Z 1(2 + P) (1 - P)W (6.16) 

The trajectory emanating from an arbitrary point (6.2) may be continued after crossing 
the SC at time 8. To that end, take (5 @I), z'(8)} as a new initial point and continue the 
motion as determined by system (4.21, with the control t( taken from (4.81, (6.1) and the per- 
turbation v from (6.15). The trajectory thus obtained crosses both branches of the SC 
an infinite number of times. 

$0 = 0 
The ratio between ordinate values for two consecutive switching 

points of the SC is equal to the number x given by formula (6.16). 
It is clear that the motion depends essentially on x. It follows from (6.16) that x=1 

when P = P* equals the "golden section", 

p+ = (5'13 - I)/'2 z 0.618 (6.17) 

Corresponding to values P < P* we have x< 1, and for P>P* we have x>l. 
Let us consider the nature of the possible motions of system (4.2) when the control 

synthesis (4.8), (6.11 corresponds to e = 0, 
I y (4 I \< Pa 

under arbitrary admissible perturbations 

If P<P*, x<i, the trajectory of motion tends to the origin. This follows from the 
fact that the ordinates 1x‘ 1 of the points at which the trajectory cuts the SC decrease at 
least as quickly as a geometric progression with quotient x<l (see (6.16)). This motion 
reaches the origin in a finite time T,. 
intervals between switchings of u, 

To estimate this time, we note that, by (4.2), in the 

1 Ax' / > (1 - p) At (6.18) 

Here At is the interval between switchings of the control 
increment to i. 

U, Ax' 
The increment ) Ai 1 

the corresponding 

II’I; 
from the origin to the first switching is at most / 9 1 f 

from the first switching to the second it is, by (6.16), /Y I(1 +x), and so on. Con- 
tinuing these estimates and using inequality (6.181, we get 

T, (E, n) < (1 - P)_' [I rl I + I y I f I y I (1 + 4 x 
(1 Jr x + x2 f . . .)I = (1 - p)-’ [I q 1 + 2 I Y / (1 - PC)-‘I 
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The quantity / P / is determined by (6.13). 
If p = p*, 1c = i,the trajectory corresponding to an optimal (worst) perturbation (6.15) 

is periodic. It passes through the same points of the phase plane in equal time intervals T,. 
To determine T,, we put y = -_r, p == p* in (6.14). This gives 

T, = 28 = r, (1 - p*y- / 11 / F bps-” / q / z 6.464 j q j 

But if the perturbation v is not "worst", the trajectory will hit the origin. 
If p > I’*. x 2 1, the trajectory may 

go off to infinity given certain pertur- 
bations, e.g., for the perturbation (6.15). 

Fig.2 shows the phase trajectories of 
system (4.2) under the control (4.81, 
(6.1)) given "worst-case" perturbations 
(6.15). The thick curve represents the SC 

Q" = U (see (6.1)), the thin curves 
phase trajectories, with solid curves cor- 
responding to the case p(p.+. and the 
dashed curves top> p*. 

Fig.2 

Thus, thecontrol law (4.81, (6,1), 
which ignores perturbations, transfers 
system (4.2) to the origin in a finite time, 
for any admissible perturbations /u(t) I-“, p, 
only if p< p*. By contrast, the control 
law (4.81, (4.91, constructed taking per- 
turbations into account, transfers the same 
system to the origin in a finite time for 
any perturbations 1 u(1) ] <p for allp<i. 

Thus, the ratio p = p* in (6.17) is critical. When constructing a control for system 
l4.2), one can ignore the existence of a perturbation v only if the ratio p of the maximum 
level of the perturbation V to that of the control u remains less than the "golden section": 

P ==z P* c 0.818. 
The control method proposed in this paper is quite simple and it does not require an 

exact knowledge of the non-linear terms and perturbing forces in the equations of motion. 
All one needs is the maximum values of these quantities. The method is not overly sensitive 
to slight variations in the system parameters or to additional perturbations: to take such 
factors into consideration, one need only increase the parameter p, leaving a sufficient 
"satisfy margin" in respect of this parameter. 

We observe, in conclusion, that the above method of control may be used to control the 
motion of manipulatory robots, since the dynamics of such systems is described by systems of 
equations of the form (1.31. 
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